知識ゼロからものづくりを学ぶ「機械設計エンジニアの基礎知識」

機械要素の基礎を学ぶ
【 目 次 】

1. 機械要素とは .. 5
2. ねじの用途と構造 .. 6
2-1. ねじの用途 .. 6
2-2. ねじの構造 .. 6
3. ねじの種類と形状 .. 9
3-1. ボルト .. 9
3-2. 小ねじ（こねじ） .. 9
3-3. ナット .. 10
4. ねじのゆるみ止め .. 12
4-1. ねじがゆるむ原因とは .. 12
4-2. ねじのゆるみが発生しにくくする方法 ... 13
5. ねじの締め付けトルク ... 15
5-1. 締め付けトルクとは ... 15
5-2. 締め付けトルクと締付け力（軸力）の関係 17
6. ねじの強度と強度区分 ... 18
7. キーの種類 .. 19
7-1. キーとは .. 19
7-2. キーの種類 .. 19
7-3. キーの用途 .. 19
7-4. 注意点 .. 21
8. ピンの種類 .. 22
8-1. ピンとは .. 22
8-2. ピンの種類 .. 22
8-3. ピンの抜き取り .. 23
8-4. ピンの確認ポイント ... 24
9. 軸と軸受 .. 25
9-1. 軸とは .. 25
9-2. 軸の種類 .. 25
9-3. 軸受とは？ .. 26
9-4. 軸受の種類 .. 27
9-5. 流体潤滑の基礎 ... 28
10. 歯車 .. 28
10-1. 歯車とは .. 28
10-2. 歯車に関する基礎知識 ... 28
10-3. 歯車の不具合の原因 ... 30
11. カム .. 31
11-1. カムとは .. 31
11-2. カム曲線とは .. 31
11-3. 接触子 .. 31
11-4. カムの役割 .. 32
11-5. カムの種類 .. 33
12. リンク .. 35
12-1. リンクとは .. 35
12-2. 対偶（たいぐう）とは ... 35
12-3. リンクの種類 .. 36
12-4. リンク機構とクランク機構の違い 37
13. ばねとばね定数について .. 38
13-1. ばね定数 kについて .. 39
13-2. ばね .. 40
13-2-1. ばね用材料 .. 40
13-2-2. ばねの種類 .. 40
13-3. 壓縮、引張、ねじばねの計算方法 41
13-3-1. ばねに発生するねじり応力 41

WEB サイトはこちらをクリック → http://d-engineer.com/
知識ゼロからものづくりを学ぶ 機械設計エンジニアの基礎知識

【ご利用規約】

本テキスト（以下、本テキストと表記する）の著作権は、「ものづくりウェブ」にあります。

・ 著作権
本テキストのすべての内容は、日本の著作権法及び国際条約の条項によって保護されています。テキスト内の文章・写真・画像等すべての転載転用を固く禁じます。

・ 利用制限
社内教育及び同一組織内における教育（非営利目的に限る）でご活用の際は、印刷・配布等を行って頂いても問題ありません。営利目的および同一組織外でご利用の際は、『商用利用ライセンス』の申請をお願いします。事前の許諾なく、無断で営利目的の利用をした場合、利用者は当社に対し正規利用料金の賠償をなすもののとし、その後一切の当社コンテンツ利用を禁止致します。

・ 賠償責任の制限
本テキストに記載する情報には、内容の正確性については細心の注意を払っておりますが、間違いを含んでいる可能性もございます。万が一本テキストの情報により、不利益や損害を被った場合においても、当社は一切の責任を負いかねますのでご容赦下さい。

知識ゼロからものづくりを学ぶ機械設計エンジニアの基礎知識

株式会社 R E
TEL: 052-766-6900
(平日 10:00 - 18:00)
ものづくりウェブ

公式 HP: http://d-engineer.com
会員 HP: http://d-monoweb.com
1. 機械要素とは

機械要素の知識は機械設計を行う上で非常に重要な知識です。

私達が日々利用する自動車や家電製品、航空機、船をはじめとし、これらを製作する製作機械などの設備に至るまで様々な機械要素が利用されています。

機械要素とは、ボルトやナットなどの部品を固定するものから、歯車など回転運動をするものまで様々なものがあります。これら標準的な部品や機械を構成する最小の機能単位が機械要素です。機械は、個別で設計する部品と数多くの規格を持つ機械要素の組み合わせで構成されます。

例えば、自動車を例にとると、シャーシ、ボディ、エンジン、タイヤ、トランスミッション、内装部品などの様々な部品やユニットから構成されます。これらの部品は、ボルトやナット、リベットなどのJISで規格を持つ標準的な部品による機械要素により固定されます。

また、エンジンのピストン運動を回転運動に変えるために、カムや歯車が存在します。カムは自動車のエンジンで使われるイメージがありますが、産業用のロボットなどでも利用されています。

また、自動車の走行中の路面からの振動を制御するためのサスペンションには、ばねやダンパーといった機械要素が使われ、走行したり停止したりする際には、クラッチやブレーキといった機械要素が使われます。

タイヤに動力を伝えるためには、エンジンの往復運動を回転運動に変換したのち、ドライブシャフトやベアリングなどの軸や軸受けが使われます。

以上のように、機械は単純な機械要素という部品の組合せで作られており、上記に示した例を含め、以下の分類のものがあります。

- 締結要素
- 伝達要素
- 液体伝達要素
- 密封要素
- 案内要素
- 制御要素
- エネルギーの変換要素
- 緩衝要素
2. ねじの用途と構造

2-1. ねじの用途

私達の最も身近にある機械要素がねじです。自宅においても、壁に絵画を取り付けたり、カーテンレールを取り付けるのもねじです。また、ねじは部品を固定するのみでなく、万力のように回転運動を直線運動に変える働きを持っています。

設計者は、ねじの種類と特徴を理解して、設計する製品にどのねじを利用するのか決める必要があります。ねじには力が加わるため、ねじの選択を誤ると機能を果たせなかったり、最悪は破損に繋がります。

近年、発生している事故の多くは「ねじ」をはじめとした機械要素によるものです。遊園地で起きたジェットコースター事故では、車輪の軸を固定するねじ部の疲労破壊により発生しています。従って、設計者はねじをはじめとした機械要素を使用環境に応じて適切に利用する必要があります。

2-2. ねじの構造

まずはじめに「ねじを選択する際に知っておくべき基本的な知識」について説明します。

ねじの断面を観察すると図のように山と谷が存在しているのが分かります。

おねじの場合、山の径を外径 谷の径を谷径 といいます。

めねじの場合、内側の径を内径 谷の径を谷径 といいます。

また山の角度をねじ山の角度(included angle)といいます。
隣り合う山の中心間距離をピッチ (pitch) といいます。ピッチは \(p \) という記号が使われます。例えば、ピッチが1.2mmの場合 \(P=1.2 \) となります。

そして、ねじの谷の幅がねじ山の幅に等しくなるような仮想的な円筒の直径を有効径といいます。

ねじが1回転したときに進む距離をリードといいます。ねじの有効径を \(d \) とし、リード角を \(\beta \) とすると、リード \(L \) は次の式で計算されます。

円の周りの長さは、中学生のときに学んだと思いますが、直径の約 3.14 倍なので

\[
\tan \beta = \frac{L}{\pi d}
\]

リード \(L = \pi d \tan \beta \) となります。
従って リード L は ピッチ p と等しくなります。
$L = p$
これは1条ねじの場合であり、2条ねじの場合は異なります。

1条ねじとは1本のつる巻き線にそってねじ山を作ったものです。
つる巻き線とは先ほどの直角三角形を円筒に巻きつけたときにできる「らせん」のことです。

2条ねじでは、2本のつる巻き線となるため、リードは1条ねじの2倍となります。
従って、リード $L = 2p$ となります。

ゆえに、リード L はねじの条数によって以下の式で表すことができます。

$L = np$
n ねじの条数
p ピッチ

右ねじ 左ねじ
一般的に使われるねじは右ねじです。右に回すと締り、左に回すとゆるみます。
左ねじとはその反対となります。
3. ねじの種類と形状

ねじの形状は、様々な用途、外見によって適切なものを選ぶ必要があります。

3-1. ボルト

部品と部品を締結して、固定する事ができます。軸部の全てがねじである全ねじ（フルスレッド）だけでなく、半ねじ（中ボルト）もあります。材質は、鋼、ステンレス、アルミ合金、チタン合金、あるいは樹脂などがあります。

<table>
<thead>
<tr>
<th>写真</th>
<th>名称</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>六角ボルト</td>
<td>一般的にボルトと言えば、この六角ボルトを示しており、スパナやレンチを使って締めることができます。建設や大型機器などに使用されることが多いボルトです。</td>
</tr>
<tr>
<td></td>
<td>座金組込み六角ボルト</td>
<td>機械や建設、車両に使われることが多いボルトです。ボルトに座金と平座金が組み込まれており、脱落しないため、作業効率が良いといわれています。</td>
</tr>
<tr>
<td></td>
<td>六角穴付ボルト</td>
<td>六角ボルトと比べて呼び径が短いものもあるのが特徴です。六角レンチを使って締められます。</td>
</tr>
<tr>
<td></td>
<td>六角穴付皿ボルト</td>
<td>六角穴付皿ボルトは頭部が皿のような形状になっています。六角穴付きボルトと同様に六角レンチで締め付けます。</td>
</tr>
<tr>
<td></td>
<td>アイボルト</td>
<td>リングの部分にワイヤーやチェーンを取り付ける事が可能です。</td>
</tr>
<tr>
<td></td>
<td>蝶ボルト</td>
<td>工具が無くても人の手で締めることができるのが特徴です。</td>
</tr>
</tbody>
</table>

3-2. 小ねじ（こねじ）

主にプラスドライバーを用いて、締めたり、緩めたりすることができます。近年では、マイナスねじは締め付ける力が弱く使用されるケースが少なくなっています。

<table>
<thead>
<tr>
<th>写真</th>
<th>名称</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ナベ小ねじ</td>
<td>一番よく使われているねじで、鍋のような丸みのある頭部の形が特徴です。</td>
</tr>
<tr>
<td></td>
<td>皿小ねじ</td>
<td>上部が平らになっており、取り付けたときにねじの部分の出っ張りをなくすことができます。</td>
</tr>
</tbody>
</table>

http://d-engineer.com

Copyright 2015-2016. ものづくりウェブ-MONOWEB- All right reserved.
3-3. ナット

ナットは、ボルトやねじと一緒に組み合わせて使います。

<table>
<thead>
<tr>
<th>写真</th>
<th>名称</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>六角ナット</td>
<td>ボルト、ねじを固定するために最も一般的で多く使われるナットです。家電製品、精密機械から、交通標識や橋などの建造物まで様々な箇所で使われています。</td>
</tr>
<tr>
<td></td>
<td>六角袋ナット</td>
<td>ナットの片面が丸みのある袋状で覆われており、貫通することができないようにしています。ネジが露出しないため、安全性を高めることができますが、使用前からねじの長さを測る必要があります。</td>
</tr>
<tr>
<td></td>
<td>蝶ナット</td>
<td>蝶ナットは、工具を使わずにねじを固定できることが特徴です。円弧状、角状、板状など形状は様々です。強固に取り付けが必要な箇所での使用は適していません。</td>
</tr>
<tr>
<td></td>
<td>フランジナット</td>
<td>フランジの部分がワッシャーと同じ働きをします。フランジの裏にはセレートと呼ばれる溝が有る物と無い物があります。セレートが有ると緩みを防止できますが、部材に締め付け跡が残ります。</td>
</tr>
<tr>
<td></td>
<td>高ナット(つなぎナット、ジョイントナット)</td>
<td>六角ナットよりも全体が長くナットです。重量物、機械の足の部分の高さを調節するために使われます。</td>
</tr>
<tr>
<td></td>
<td>アイナット</td>
<td>頭部がリング状になっているナットでロープやチェーン、ワイヤーを通して使用することができます。</td>
</tr>
</tbody>
</table>
四角ナット（板ナット）
四角ナットは、溝などにはめ込んで使えば回転しないため、六角ナットのように手で押える必要がなく、締め付け作業を行うことができます。

溶接ナット（ウエルドナット）
溶接ナットは、金属製の薄板などに溶接して、取り付けてから使用します。溶接ナットには、六角、四角、T型、丸形など様々な形状があります。

インサートナット
主にプラスチックに埋め込んで使用するためのナットです。材質には、真鍮やアルミなどがあります。

ヘリサート
アルミなどにタップを切る際に使用します。
4. ねじのゆるみ止め

ねじは、通常しっかりと締まってなければいけませんが、永久的に結合してしまうと、メンテナンスや保守、修理、運搬ができなくなってしまいます。つまり、通常時にはしっかりと締まって固定されており、必要の際にはゆるめて取り外しできるようにする必要があります。

そしてねじは、時間が経過すると、視覚的に確認することは難しいですが、少しずつゆるみます。また、振動の影響を受ける機械、モーター、あるいは常に車の振動の影響を受ける道路や橋などの建造物は、ねじがゆるむスピードが早いため、通常のボトルとナットを締めること以外にも対策が必要になります。ここでは、ねじがゆるむ原因を説明し、ねじのゆるみが発生しにくくする方法についても紹介していきます。

4-1. ねじがゆるむ原因とは?

ボルト、ナットがゆるむ原因は大きく分けて、2つに分類されます。

1. ナットが回転しない状況でのゆるみの発生

・ 初期ゆるみ・・・締結する際に、被締結部材（ボルトで固定される部材）、ボルトの座面、ナットの座面などの接合部分に荷重がかかります。締結する前、それぞれ接触する面には、微細な凹凸がありますが、これが締め付けられたあとでは、摩耗し徐々に平坦になります。これがゆるみを発生させます。

・ 陥没ゆるみ・・・ボルトとナットによる締め付けの圧力により、被締結部の表面が陥没しゆるみが生じます。

・ 衝撃、振動によるゆるみ・・・振動、衝撃により、締め付ける力が低下して、ゆるみが発生します。

・ 温度差によるゆるみ・・・被締結部が温度の差によって膨張、収縮を繰り返すことによりボトル、ナットがゆるみます。

2. ナットが回転する状況でのゆるみの発生

・ 戻り回転によるゆるみ・・・ボルトとナットの戻り回転の力により、ゆるみが発生します。

・ 軸直角方向への繰り返し外力によるゆるみ・・・非締結部材が横（軸直角方向）に繰り返し力がかからると、ゆるみが発生します。
4-2. ねじのゆるみが発生しにくくする方法

通常時にしっかりと結合が維持されるための部品や方法を説明していきます。

・ 座金（ワッシャー）

座金には、平座金、ばね座金、歯付き座金などがあり、通常のゆるみ防止以外にもボルト穴が大きすぎたり、座面に凹凸があったり、傾いている場合の対策としても使われます。

<table>
<thead>
<tr>
<th>座金</th>
<th>ばね座金</th>
<th>歯付き座金</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般的によく使われています。素材は鉄、ステンレス以外にもゴム、シリコン、プラスチックの場合もあります。</td>
<td>ばねの作用を利用したもので、ゆるみ防止に効果があります。スプリングワッシャーとも呼ばれます。</td>
<td>歯によって座面に傷跡がつきますが、ゆるみ防止に関して高い効果が得られます。</td>
</tr>
</tbody>
</table>

・ ダブルナット

主に振動に対するゆるみ止めの方法として有効とされています。通常ボルトとナットは一つづつ使われますが、ダブルナットでは、ナットを上下重ねて2つ使えます。こうすることでナット間で引張力が働き、ナット同士を締め付ける効果があります。

・ ハードロックナット

ハードロックナットは日本古来の技術であるくさびの原理を元にして、1974年にハードロック工業によって開発されました。ナットの部分にくさびの役割を持つ溝が作られています。従来のナットに比べ格段にゆるみの発生を抑えられる効果があります。
溝付きナットと割ピン

ボトルに割を挿入し、ピンをボルトに貫通させナットの溝に組み込みます。これによりナットの回転を抑制でき、ねじのゆるみを防止できます。溝付きナットはキャッスルナットと呼ばれることもあります。

ゆるみ止め用接着剤
専用接着剤によってゆるみを防止します。塗布する場所は、主にボルトの溝の部分になります。様々な種類がありますが、中には、使用したらその後取り外しできない強力な接着剤もあります。

また、ねじのゆるみを防ぐ方法、技術として次のようなものがあります。

対角線に締める
主にタイヤの取り付けに用いられます。ボルトは一方方向の順番に締め付けると、一箇所の部分に偏った力が集中してしまいがちですが、対角線にボルトを締めることによって、締め付ける力を均等にすることができます。

増し締め
一度締めたボルトを半日後、あるいは1日後に再度締め付けることによって、ねじゆるみを防ぎ、締め付け力を向上させることができます。

ねじがゆるむと機械が正常に作動しなかなかったり、思わぬ重大な事故にもつながりかねませんので、正しい知識と対処方法を知ることが大切です。
5. ねじの締め付けトルク

5-1. 締め付けトルクとは

ねじを回して締め付けた際に発生する締付け力（軸力）について説明します。ねじを回して締め付けるときに回転方向に回す力を「締め付けトルク」といいます。

締め付けトルクは、「押す力:F1」と「ボルトの回転中心から力をかける点までの距離:L」をかけた値となります。

\[
T = F_1 \times L \ [N\cdot m]
\]

単位は 力 × 距離 なので [N·m] となります。

＜参考＞
トルクの単位は従来の重力単位系である kgf·cm から SI 単位系である N·m に変更されています。SI 単位系から重力単位系に換算する場合以下となります。

\[
1 \ [N\cdot m] = 10.2 \ [kgf\cdot cm]
\]

ねじを締め付ける時は、締付けトルクで管理することになります。締付けトルクが小さ過ぎるとねじがゆるみ、締付けトルクが大きすぎるとねじが破損することになるからです。

締付けトルクには、T 系列という規格があります。
知識ゼロからもののづくりを学ぶ 機械設計エンジニアの基礎知識

表1. T系列 締め付けトルク表

<table>
<thead>
<tr>
<th>ねじの呼び径</th>
<th>T系列[N・m]</th>
<th>0.5系列[N・m]</th>
<th>1.8系列[N・m]</th>
<th>2.4系列[N・m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.0195</td>
<td>0.0098</td>
<td>0.035</td>
<td>0.047</td>
</tr>
<tr>
<td>(M1.1)</td>
<td>0.027</td>
<td>0.0135</td>
<td>0.049</td>
<td>0.065</td>
</tr>
<tr>
<td>M1.2</td>
<td>0.037</td>
<td>0.0185</td>
<td>0.066</td>
<td>0.088</td>
</tr>
<tr>
<td>(M1.4)</td>
<td>0.058</td>
<td>0.029</td>
<td>0.104</td>
<td>0.14</td>
</tr>
<tr>
<td>M1.6</td>
<td>0.086</td>
<td>0.043</td>
<td>0.156</td>
<td>0.206</td>
</tr>
<tr>
<td>(M1.8)</td>
<td>0.128</td>
<td>0.064</td>
<td>0.23</td>
<td>0.305</td>
</tr>
<tr>
<td>M2</td>
<td>0.176</td>
<td>0.088</td>
<td>0.315</td>
<td>0.42</td>
</tr>
<tr>
<td>(M2.2)</td>
<td>0.23</td>
<td>0.116</td>
<td>0.41</td>
<td>0.55</td>
</tr>
<tr>
<td>M2.5</td>
<td>0.36</td>
<td>0.18</td>
<td>0.65</td>
<td>0.86</td>
</tr>
<tr>
<td>M3</td>
<td>0.63</td>
<td>0.315</td>
<td>1.14</td>
<td>1.5</td>
</tr>
<tr>
<td>(M3.5)</td>
<td>1</td>
<td>0.5</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>M4</td>
<td>1.5</td>
<td>0.75</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>(M4.5)</td>
<td>2.15</td>
<td>1.08</td>
<td>3.9</td>
<td>5.2</td>
</tr>
<tr>
<td>M5</td>
<td>3</td>
<td>1.5</td>
<td>5.4</td>
<td>7.2</td>
</tr>
<tr>
<td>(M7)</td>
<td>8.4</td>
<td>4.2</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>M6</td>
<td>5.2</td>
<td>2.6</td>
<td>9.2</td>
<td>12.2</td>
</tr>
<tr>
<td>(M14)</td>
<td>68</td>
<td>34</td>
<td>120</td>
<td>166</td>
</tr>
<tr>
<td>M16</td>
<td>106</td>
<td>53</td>
<td>190</td>
<td>255</td>
</tr>
<tr>
<td>(M18)</td>
<td>146</td>
<td>73</td>
<td>270</td>
<td>350</td>
</tr>
<tr>
<td>M20</td>
<td>204</td>
<td>102</td>
<td>370</td>
<td>490</td>
</tr>
<tr>
<td>(M22)</td>
<td>282</td>
<td>140</td>
<td>500</td>
<td>670</td>
</tr>
<tr>
<td>M24</td>
<td>360</td>
<td>180</td>
<td>650</td>
<td>860</td>
</tr>
<tr>
<td>(M27)</td>
<td>520</td>
<td>260</td>
<td>940</td>
<td>1240</td>
</tr>
<tr>
<td>M30</td>
<td>700</td>
<td>350</td>
<td>1260</td>
<td>1700</td>
</tr>
<tr>
<td>(M33)</td>
<td>960</td>
<td>480</td>
<td>1750</td>
<td>2300</td>
</tr>
<tr>
<td>M36</td>
<td>1240</td>
<td>620</td>
<td>2250</td>
<td>3000</td>
</tr>
<tr>
<td>(M39)</td>
<td>1600</td>
<td>800</td>
<td>2900</td>
<td>3800</td>
</tr>
<tr>
<td>M42</td>
<td>2000</td>
<td>1000</td>
<td>3600</td>
<td>4800</td>
</tr>
<tr>
<td>(M45)</td>
<td>2500</td>
<td>1260</td>
<td>4500</td>
<td>6000</td>
</tr>
<tr>
<td>M48</td>
<td>2950</td>
<td>1500</td>
<td>5300</td>
<td>7000</td>
</tr>
<tr>
<td>(M52)</td>
<td>3800</td>
<td>1900</td>
<td>6800</td>
<td>9200</td>
</tr>
<tr>
<td>M56</td>
<td>4800</td>
<td>2400</td>
<td>8600</td>
<td>11600</td>
</tr>
<tr>
<td>(M60)</td>
<td>5900</td>
<td>2950</td>
<td>10600</td>
<td>14000</td>
</tr>
<tr>
<td>M64</td>
<td>7200</td>
<td>3600</td>
<td>13000</td>
<td>17500</td>
</tr>
<tr>
<td>(M68)</td>
<td>8800</td>
<td>4400</td>
<td>16000</td>
<td>21000</td>
</tr>
</tbody>
</table>

用途 一般 電子部品 車両・エンジン 建設

用途別にトルクが規定されており、例えば自動車の場合、1.8 系列の締め付けトルクで固定することになります。

また締め付けトルクはねじのサイズによって値が変わります。大きなねじ程、大きな締め付けトルクとなります。
これは締め付けトルクと締付け力（軸力）の関係から理解できます。
締め付けトルクと締付け力（軸力）の関係

締め付けトルクと締付け力（以下軸力とする）は以下の関係式で求められます。

\[T = kdF \]

- \(T \): 締め付けトルク (N・m)
- \(F \): 軸力 (N)
- \(d \): ネジの呼び径 (m)
- \(k \): トルク係数

実際にかかる軸力は、ネジの座面の表面粗さやネジのピッチなどによって変わってきます。これらの要素を考慮したものがトルク係数です。トルク係数（\(k \)）は一定ではなく、0.15から0.2が一般的な値です。

例えば、M10ボルトで1.8系の用途における締付けトルクは、表1より44 [N・m]です。

\[T = kdF \
\]

\[k = 0.2 \
\]と設定した場合の軸力は

\[F = T / kd = 44 \ [N\cdot m] / 0.2 \times 0.01 [m] = 22,000 [N] \]

M10のボルトをトルク44[N・m]で締め付けた際に発生する軸力は22,000[N]となります。
6. ねじの強度と強度区分

ねじは部品を締結するため大きな力が加わります。ねじの選択を誤ると機能を果たせず、最悪は破損に繋がることになるため適正な強度のねじを選択する必要があります。ねじを締めるとねじが伸びて次第に締め付け力が増します。しかし、ある一定の力以上に締め付けると、力が抜けて最後はねじ切れます。

力が抜けるポイントを降伏点といい、この点までボルトは伸びても元の長さに戻ります。しかし、この点を超えると元の長さには戻りません。これらの特性を踏まえてボルトを選定することになります。ボルトの頭には下図のように強度区分が記載されています。

4.8 という数字が強度区分です。はじめの数字の 4 は、引張強さを示します。4 は 400N/mm²を表しています。つまり、「400N/mm² までボルトが破損しません！」ということを示しています。

次の数字の 8 は、「引張強さの 80%が降伏点ですよ！」ということです。従って、400N/mm² の 80%である320N/mm² が降伏点となります。このようにボルトの頭に書かれている数字を確認することでボルトの強さがわかるということです。JIS では下表の10個の強度区分が設けられています。

<table>
<thead>
<tr>
<th>強度区分</th>
<th>3.6</th>
<th>4.6</th>
<th>4.8</th>
<th>5.6</th>
<th>5.8</th>
<th>6.8</th>
<th>8.8</th>
<th>9.8</th>
<th>10.9</th>
<th>12.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>呼び引張強さ(N/mm²)</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>下降伏点</td>
<td>180</td>
<td>240</td>
<td>320</td>
<td>300</td>
<td>400</td>
<td>480</td>
<td>540</td>
<td>720</td>
<td>900</td>
<td>1080</td>
</tr>
</tbody>
</table>
7. キーの種類

7-1. キーとは

キーとは軸と回転体をすべらないように締結させるためのものです。また、これによって他の歯車などへ動力を効率良く伝えることができます。とてもシンプルな部品で簡単に分解できます。別名で、「マシンキー」とも呼ばれ、一般的にイメージされる住宅の鍵とは全く異なったものです。

キーの大きさは、軸の太さによって決まります。つまり軸の太さが決めれば、自動的にキーの大きさも決まります。キーが受けられる力は、それぞれの材料の剪断応力によって変わります。

剪断応力（せんだんおうりょく）の剪断とはハサミで切るときのようなねじり切る切り方のことです。剪断する際には、抵抗して押し返してくる力が発生しており、これを剪断応力といいます。（詳細は材料力学の基礎を参考にしてください）

軸や回転体には、キーをはめ込むキー溝が有るものと無いものに分かれ、キー溝が有るものは、動力伝達用に使用され、キー溝が無いものは軽荷重用となります。また、軸に取り付けられる機械的要素側をボスと呼びます。

7-2. キーの種類

<table>
<thead>
<tr>
<th>平行キー ストレート</th>
<th>平行キー 片端丸形</th>
<th>平行キー 両端丸形</th>
<th>勾配キー（頭付き）</th>
<th>半月キー</th>
</tr>
</thead>
</table>

7-3. キーの用途

沈みキー

電動装置など、一般的によく使われているキーです。軸と回転体などのボスの両方にキー溝を作り、キーをはめ込みます。回転体の動力が確実に伝わるというメリットがあり、高速回転、重荷重に適しています。平行キーや勾配キーが使われます。
・ 半月キー
キー溝の加工が容易で、先の部分に向かって細くなっているテーパー軸でよく使用されます。通常では、テーパーの形状に合わせて正確にキー溝を加工するのは難しいが、半月キーであれば、フライスカッターによって容易に加工できます。伝達能力は低いのがデメリットです。ウッドラフキー（wood ruff key）とも呼ばれています。※フライスカッターとは、円板の外周面に刃があり、これを回転させながら物を切削する工具です。

・ 接線キー
キーのなかで最も強く固定できます。キー溝を軸の接線方向に作り、勾配1/60〜1/100の2つのキーを互いに反対向きに打ち込んだものです。また、ボスや軸を弱めないというメリットもあります。伝達能力が高く、圧延機、重荷重や回転方向が正逆に変化する交番トルクの軸に最適です。※圧延機とは、ロールによって材料などを圧力を加えて、薄くしたり、細く延ばしたりする加工を行う機械です。

・ 平キー
ボスに勾配1/100のキー溝があり、軸にはキー座として平らに加工して使用します。伝達力は、キーと軸の接触圧力によって発生する摩擦の力と摩擦のトルクです。軽荷重用でくらキーよりも固定度は高いといわれています。

・ くらキー
軸には加工を行わず、ボス側に勾配1/100のキー溝を加工します。伝達力はキーと軸との接触圧力によって発生する摩擦力だけです。大きな荷重が作用する場合や正転、逆転する変動トルクの部分には使えず、主に
軽荷重用として使われます。

・丸キー
伝達力が非常に小さく、小軽荷重用として使われます。丸ピンをキーの代わりとしてはめ込んで固定します。

・すべりキー
すべりキーは沈みキーの一種で、主にクラッチや変速歯車装置に使われます。キーを軸やボスにボルトで固定して、スライドできるようにしたもので、ボスを軸方向に動かすので、ともがねを回避する必要があり、キーの材質は非鉄金属などボスと異なる材質を用います。
※ともがねとは、同種の素材同士（例：鉄と鉄など）を摩擦させた場合、素材が大きく摩耗してしまうことです。

7-4. 注意点
方向が繰り返し変わる交番荷重の際には、軸とともにフレッチング摩耗を起こすことがあるので、注意が必要です。
主な対策としては、次の通りです。
● 軸のはめ込み（嵌合かんごう）をきつくする。
● キー溝をJIS精級する。
※フレッチング摩耗とは、接触する2つの物体間に極小の往復滑りが繰り返し行われたとき、表面損傷して摩耗することです。
8. ピンの種類

8-1. ピンとは

２つ以上の部材や部品を締結するため、あるいは位置決め、ねじの回り止めのために使用します。回転するものに対してピンを使用すると、回転によりピンが抜け出ることがあるので、注意が必要です。

8-2. ピンの種類

・ 割ピン

割ピンの役割は、ナットのゆるみ防止と脱落防止です。通常ボルトとナットで部材を固定しますが、振動、温度差あるいは自然に回転が逆に戻ろうとする力によりナットはゆるみます。ボルトがゆるんでもまえば、当然、機械や部材が正常な機能を果たさないことになります。その問題を解消するのが、割ピンです。

具体的には、ボルトにナットを締め込んだ後に、ピン穴に割りピンを挿入します。その後、割ピンの脚の両方を左右に開き、部品をしっかりと固定します。ボルト、ナット両方にピンを挿入します。使用例としては、バイクなどの二輪車、自動車、工場内クレーンなどの運搬機器に使われます。

素材には、鋼、黄銅、ステンレスなどが使われます。割ピンを使用して、その後一度でも取り外したら、金属疲労などで折れやすくなっているため、再利用はできません。

・ スプリングピン

スプリングピンは、薄板に熱処理をして円筒状に巻いたピンです。穴に取り付けたときに、ばねの作用により穴の内側に密着して高い保持力が発生します。ベルトコンベアーや負荷の小さい機械に用いられます。波形のスプリングピンは、製品同士の絡みを防止するためです。平行ピン、テーパーピンと比べると軽量であることも特徴の一つです。ばね作用を利用して固定するので、リーマ穴は不要で、ドリル穴を使う事ができます。ストッパーとして使用する際には、波形は使用できず、ストレート型を使います。

※ リーマ穴は、ドリルであけた穴の後に内面部分を美しく仕上げた状態の穴のことです。
平行ピン
平行ピンは「ノックピン」とも呼ばれます。2つ以上の部品を締結する際に、固定されている状態で、一緒に穴をあけ（とも穴ともいいます。）、その穴に平行ピンを打ち込みます。精密加工や負荷の大きい機械に使われます。

テーパーピン
テーパー型（先方向に向かって細くなっている）のピンです。軸をポスに固定する場合の位置決めや締ぎ手などに使われます。振動や衝撃によってゆるみが発生しやすいので、注意が必要です。
※ テーパーピンとストレートピンでどちらを使えばよいか、迷ってしまった場合。

質問
機械の組み立て調整後に、位置決めのためにハンドドリルで穴をあけ、リーマを通してピンを打つ場合には、テーパーピンにするべきか？ストレートピンにするべきか？

回答
メーカーによって考え方や目的が違え、全てにテーパーピンを使う場合も有り、その逆にすべてにストレートピンを使う場合も有ります。

基本的には、組み立て調整後に穴をあけるのは、テーパーピンで、部品加工の際に穴をあけるのが、平行ピンです。それぞれのメリットとしては、テーパーピンは、抜けにくく、分解し、再度組み立てた後の精度が高いです。平行ピンは組み立て時に調整が必要となります。

8-3. ピンの抜き取り
保守や点検、修理の際には、取り外しが可能で、分解できます。ノックアウターやピンポンチを使って、ピンを抜き取るのが一般的です。

<table>
<thead>
<tr>
<th>ノックアウター</th>
<th>ピンポンチ</th>
</tr>
</thead>
<tbody>
<tr>
<td>力が強く太径ノックピンでも引き抜くことができます。</td>
<td>部品を固定して、ピンポンチをピンに当ててハンマーで叩いて抜きます。</td>
</tr>
</tbody>
</table>
8-4. ピンの確認ポイント

ピンが正しく作用しているかを確認するためのポイントは次の通りです。

- 打ち込んだピンが脱落していないか。
- ピンの形状が曲がったり、破損していないか。
- 固定した位置のずれはなか。
- 回転するボスの場合、固定したはずのボスが空回りしていないか。
9. 軸と軸受

9-1. 軸とは
軸は動力の伝達、回転体を支えるためのもので、電動機の主軸のような回転力を伝える「回転軸」と電車、自動車など、回転する車輪を支える「固定軸」があります。車の左右の車輪をつなぐ車軸などがあります。

9-2. 軸の種類

・ 伝動軸
回転運動により、ねじり作用を受けることになります。タービン軸、モーター軸、船の推進軸、送風機の軸などに使われています。

・ 車軸
自動車、自動二輪、バイクなど、車両の車輪に付けるための軸で車体を支えます。主に垂直荷重による曲げ作用を受け、車輪を駆動する際には、ねじり作用も受けます。

・ クランク軸
クランクシャフト、曲軸とも呼ばれています。ピストンの往復運動を主軸の回転運動に変換するために用いられる軸。主な用途としては、空気圧縮機、自動車、船のエンジンがあります。

・ たわみ軸
方向を自由に変えながら回転する軸。細いピアノ線をより合わせて柔軟に曲がる屈曲性を持たせているため、ねじり剛性は高いのですが、曲げに対する耐性が弱いのがデメリットです。単純に回転を伝達する場合や小さなトルクを伝達する場合に適しています。主な用途としては速度計、距離計などに使われています。
※ 剛性とは、ねじりや曲げの力に対して変化しづらさの度合いのこと。
スプライン軸

軸のまわりに山とみぞを等間隔に削り、ボス側にはまる形が成形しています。他の軸に比べると非常に高いトルクを伝達することができます。トランスミッションとプロペラシャフトの結合など飛行機、工作機械に使用されます。

スピンドル

旋盤に使われる伝動軸の一種で、回転しながら旋削や研削の作業を行います。高い精度と剛性が求められ、旋盤、ボール盤、フライス盤がこれにあたります。

9-3. 軸受とは？

軸受は機械要素の一つで軸の回転や往復運動を受け、軸を支えます。軸受があれば摩擦や摩耗を軽減することができます。逆に軸受の品質が低く、機械の故障につながるため、重要な機械部品の一つとされます。英語でベアリングとも呼ばれています。
9-4. 軸受の種類

軸受には、主に「すべり軸受」と「ころがり軸受」の2つがあります。

・ すべり軸受

すべり軸受は、軸と軸受の面が直接接触することになり、高速、衝撃荷重に対して強いといわれています。回転を支えているものは、油膜で、自動車、船舶、機械などのエンジンに使用されています。

油膜とは、薄く広がった油の膜です。油の温度が上がったり、荷重が大きいと油膜が薄くなり、金属による接触を起こし、焼き付けを起こすこともあります。

その他の特徴は次の通りです。
- 許容される荷重が大きく、振動や騒音が少なく、静かな運転が可能。
- 潤滑状態やメンテナンスをしっかり行うことで、寿命は半永久的に使用することができる。

・ ころがり軸受

ころがり軸受には、玉やころ（丸棒）が備え付けられており、摩擦抵抗を少なくしています。

その他の特徴は次の通りです。
- 起動摩擦が低い。
- すべり軸受にくらべても摩擦が少ない。
- 寸法や精度が標準化されているため、簡単に入手することができる。

2つの軸受の比較

<table>
<thead>
<tr>
<th></th>
<th>すべり軸受</th>
<th>ころがり軸受</th>
</tr>
</thead>
<tbody>
<tr>
<td>摩擦</td>
<td>摩擦が大きくなりやすい</td>
<td>摩擦は小さい</td>
</tr>
<tr>
<td>振動・騒音</td>
<td>音は静か</td>
<td>音が大きい</td>
</tr>
<tr>
<td>寿命</td>
<td>摩耗する</td>
<td>転動体が疲労する</td>
</tr>
<tr>
<td>潤滑</td>
<td>潤滑装置が必要</td>
<td>油が必要</td>
</tr>
<tr>
<td>互換性・保守性</td>
<td>互換性無し、規格無し</td>
<td>互換性有り、規格化</td>
</tr>
<tr>
<td>周速度・回転数</td>
<td>速くすることができる</td>
<td>回転数に制限あり</td>
</tr>
</tbody>
</table>
9-5. 流体潤滑の基礎

流体潤滑とは、流体膜によって2つが完全に分離している潤滑状態のことをいいます。すべり軸では、軸受と軸のすきまの中にある流体に発生する圧力が、軸受にかかる荷重を支えています。これを流体油膜圧力といいます。

※ 潤滑は動きをなめらかにすることで、摩耗、摩擦を軽減することができます。長時間使用する場合には、潤滑油の供給が必要になります。

10. 歯車

10-1. 歯車とは
伝え軸の周囲に歯形をつくり、次々に噛み合う歯によって動力を伝達する機械要素の一つです。回転する2つの軸に固定した剛体に歯を作り、一つの軸から他の軸に回転運動を伝えます。

工業用機械から、船用タービン、自動車、一般の電気工具まで様々な箇所に歯車が取り付けられています。生活に身近なところでは、ラジカセのモーター、コーヒーミル、カメラの三脚、オルゴールなどにも使われています。英語では、ギアと呼びます。歯車には、「平歯車」、「やまば歯車」、「ウォームギア」など様々な形状のものがあります。

10-2. 歯車に関する基礎知識

歯車はその形を表すために様々な数式や呼び名があります。以下に歯車の主な言葉を説明します。

- モジュールの値
「歯の大きさ」を表す値です。歯車のピッチ直径を歯数で割り算すると、モジュール値が表されます。歯車を選ぶ時や歯車を設計するときに必ず必要になります。数式：
\[M(モジュール) = \frac{D(ピッチ円直径)}{Z(歯数)} \]

- バックラッシュとは（バックラッシュ、backlash）
バックラッシュは、ねじや歯車がお互いに噛み合っている際に運動方向に意図的に作られた「すきま部分」、「あ
そびの部分」のことをいいます。バックラッシの大きさに関する問題点は次の通りです。

バックラッシが大きいと、騒音や振動の発生原因になり、機械の寿命を短くさせます。バックラッシが小さいと、伝達効率の低下と歯車の寿命低下を招きます。

オレンジ色で記された隙間をバックラッシと呼びます。

・並歯、高歯、低歯について
歯車の高さは並歯が普通の高さであり、モジュールの2.25倍の高さとなります。
高歯は、歯の高さが並歯より高くなっており、騒音や振動の問題を解消することができますが、その分、歯の曲げに関しては弱くなります。また、低歯は、並歯よりも低くなりますが、折れにくく、伝動の効率が良くなります。

・かみ合い率
かみ合い率が大きいほど、歯車の回転がスムーズに行われていることがわかります。一般的には1.25～2.50の間が良好とされています。かみ合い率を求めるときの数式は次の通りです。
かみ合い率 = 作用線上のかみ合い長さ / 垂線ピッチ

・干渉
お互いに噛み合う歯車の歯が、相手の歯元にあたってしまい正常な回転ができないことを、「干渉している」といいます。干渉が起こる原因としては、歯数が少ない場合、お互いの歯数がきわめて異なる場合に起こりやすくなります。

・潤滑
歯車に潤滑油を使う事で、騒音が大幅に解消されます。また、歯車の寿命を伸ばすことにもなります。プラスチックなどの樹脂歯車を特定の条件で使用する以外は適切な潤滑を行う必要があります。
1. グリース潤滑
グリースが有効に作用するように、流動性のあるものを使用します。主に歯車の回転速度が遅い場合に適しています。

2. はねかけ潤滑（オイルミスト潤滑）
エンジン内部にオイルを噴霧させる潤滑方式です。高速回転する歯車には不適当になります。

3. 強制潤滑
ポンプから歯車の噛み合い部分に直接潤滑油を注ぐ方式です。高速回転の歯車に使用されます。

10-3. 歯車の不具合の原因
歯車は動作状況、稼働時間や歯車の品質によって、不具合が起きます。主な不具合を解説します。

・ 折損（せっそん）
歯車が折れて損失することです。最初は小さな亀裂から始めますが、次第に歯の疲労が大きくなり、折れてしまいます。

・ 摩耗
歯が噛み合うことを繰り返し行われることで、歯の表面が削られます。歯車間の潤滑油が不足すると摩耗しやすくなります。

・ 塑性変形
過大な力によって歯が曲がり元に戻らなくなってしまいます。折損や歯の損傷の原因にもなります。

・ ピッチング
噛み合いの部分に過大な圧力がかかり、表面が剥がれることをいいます。

・ スコーリング
歯車の潤滑油が不足した場合に、歯面に起こる「ひっかき傷」のことです。荷重の大きさや高速回転することで起こりやすくなります。
11. カム

11-1. カムとは

カム（cam）は、機械部品の運動の方向を変えることのできる機械要素です。カムの歴史は古く、紀元前では、水車小屋でうすを突く仕組みに使われてきました。中世のレオナルド・ダ・ヴィンチもカムを研究し、使っていたようです。カムは、回転する軸に取り付けられ、軸の回転角度の応じた曲面が作られます。複雑な動きをなめらかにする際にも適しています。他の部品では代用できないほどに、運動特性が良くて、同じ運動を繰り返し作ることができ、高速運動にも耐えることができます。部品数が少ないため、故障も起きにくく、メンテナンスが容易であることもメリットの一つです。

具体的な例としては、

- 自動車などのガソリンエンジンの排気弁の開閉
- 遊園地のメリーゴーランド
- などに使われています。

11-2. カム曲線とは

カム曲線は、カムの運動によって作られる従節の運動曲線です。
（カムの輪郭の曲線ではありません。）

![カム曲線の図]

※ 運動を伝える側を原節といい、運動を受け取る側を従節といいます。

11-3. 接触子

カムと従節が接触する部分の事です。
平端、突端、そして、ローラーが着いている円端があります。その中でも摩擦が大きいのが、平端です。

円端、ローラーは摩耗を軽減することができますが、ローラーにすると回転精度によっては、正確にカムの動きが伝わらないケースもありますので、注意が必要です。また、カムの形状が複雑な場合には、うまく追従ができず、使用には適していません。このような場合には、平端の接触子を使う必要があります。

11-4. カムの役割

カムの主な役割を解説していきます。

① 水平運動を上下運動にする
図のように、原節が左右に動くことで、ローラーのついた従節が上下の運動を行います。

② 回転運動を上下運動にする
原節が回転することにより、従節が上下運動します。原節の形状を変えることで、様々な上下運動をさせる事ができます。
③ 回転運動を水平運動にする
円筒の表面の曲線に沿って従節が回転します。実際の使用例としては、自動車などのクラッチの切り替えに使われています。

11-5. カムの種類
原節となるカムには大きく分けて「平面カム」と「立体カム」があります。また、カム部分の形状のことをカムプロフィールといいます。

「平面カム」構造が簡単に、シンプルな動きを従属に伝えることができます。

- 板カム・・・特殊な形状をもった板で、この板を回転させる事で、従節に上下運動を伝えます。
 三角カム、ローラ付きカム、きのこ形カムなどもあります。
- 正面カム・・・板の面に溝を作り、そのなかに従節を接触させ、上下運動させます。
- 直動カム・・・カムが左右に往復運動して、従節に運動を伝えます。
- 反対カム・・・カムを従節側に設置しています。構造は直動カムを反対にしたものです。
「立体カム」 平面カムに比べ、空間に占める容積を小さくできます。

円筒カム

端面カム

円錐カム

球面カム

斜板カム

円筒カム・・・円筒の外周に溝を作りそこに従節を取りつけたものです。バレルカムともよられています。

端面カム・・・円筒の端面の外周側に溝をつくり、従節に運動を伝えます。

円錐カム・・・円筒を円錐にしたカムです。

球面カム・・・球面に溝を作ったものです。

斜板カム・・・円板をある角度をもって回転轴に付けたものです。

カムの基礎円とは？
カムの中心としたカムの一番低い部分を半径とした円をカムの基礎円といいます。

カムシャフトとは？
カムシャフトは、エンジンの部品の一つで、バルブを開閉する各気筒のカムをまとめて1本の軸に備えているシャフト（軸）の事です。断面が卵形のカムになっており、複数のカムが連なっています。

カムシャフトのリフト量について
リフト量とは、短径と長径の差を指します。基本的にカムのリフト量が大きいと動く幅が大きくなります。
12. リンク

12-1. リンクとは

リンクは、リンケージとも呼ばれています。リンクは、複数のジョイントもしくは関節と呼ばれる部分があり、自由に可動します。産業ロボット、パワーショベル、自動車のワイパー、電車のパンタグラフ、卓上の電気スタンドのアーム、傘の骨組みなど様々な場所に用いられています。

12-2. 対偶（たいぐう）とは？

対偶は、構成するリンク機構の一つで、対となる2つのリンクが運動の自由度を残して結合しているものです。例えば扉に使う蝶番です。

自由度については、扉に使う蝶番は、前後に開いたり閉じたりするため、「自由度が1つある」といえます。1本の軸で前後にスライドする場合を「1つの自由度を持つ」ということになります。

リンクを対偶で結合させた部分を「連鎖」といいます。そして、連鎖内の一つのリンクを固定し、これに対する他のリンクの相対運動を「機構」とよびます。

回転対偶は、主にドアや扉などに使われ、すべり対偶は、直線上をすぺりるために、スライダーとも呼ばれます。

＜すべり対偶＞

このほかにも次のような対偶があります。

- 点対偶・・・球体の機械要素が面として伝うような対偶。玉軸受などがあります。
- 線対偶・・・円柱の機械要素との接触しているもの。
- トラス・・・全てのジョイントが自由に回転できる回転対偶の構造です。ジョイント部分は回転できますが、モーメントが伝達されないために圧縮力や引っ張り応力のような内力が働き、外力に抵抗する
抗すことができます。

• ラーメン・・・ジョイントの部分を溶接することによって回転できないように固定した骨組み構造です。剛体となることで曲げモーメントに抵抗する作用によって外力に抵抗します。ラーメンはドイツ語で「枠」という意味です。

※ モーメントとは、物体を回そうとする力です。トルクと同じ意味で使われることもあります。

12-3. リンクの種類

■ トラス構造

トラス構造とは、動作を目的としたものではなく、状態を維持するために使われます。例えば橋です。

橋は3つのリンクを固定するため自由度がなくなります。この状態を固定連鎖といい、強い強度が必要とする構造物に利用されます。

トラス橋には、様々な形状があります。

・ ハウトラス

橋の中心に向かって「H」の字に作られた橋です。垂直材に引張力、斜材に圧縮力が発生します。

・ プラットトラス

斜材を橋の中心から支点に向かって「V」字に配置したもののです。新幹線が通る橋にも使われています。

・ ボウストリングトラス

上弦材が弓なりの放物線を描いたものです。こちらも電車が通る橋としても使われています。

<table>
<thead>
<tr>
<th>ハウトラス</th>
<th>プラットトラス</th>
<th>ボウストリングトラス</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

■ 4節リンク
知識ゼロからものづくりを学ぶ　機械設計エンジニアの基礎知識

4節リンク機構では、1通りの動きしかできないため、自由度は1となります。このことを限定連鎖といいます。

また、5節リンク機構は自由度が2ですが、リンク動作の制御が難しくなります。これを不限定連鎖といいます。

具体的には、玄関ドアの上部にあるダンパ、車の車軸を左右に動かす装置などに使われています。

※ ダンパの役割は、機械構造の振動や運動の力を減衰させる装置で、ショックアブソーバーとも呼ばれています。

■ スライダクランク

スライド部に設置されたジョイントが可動します。決めた動作を繰り返すのに適しています。自由度は1です。
往復運動を回転運動に変えることができるまで、蒸気機関車の動輪に使ったり、あるいは、ミシンの針の動き、エアコンプレッサーに使われることがあります。

※ エアコンプレッサーは、圧縮空気を作り出す機械で、釘打ち、塗装のスプレーガン、浮き輪などの空気入れなどができます。

12-4. リンク機構とクランク機構の違い

リンク機構は、入力動作を異なる動作に変換するために組み合わせたものですが、クランク機構はクランクピン、スライダーピン、棒などから組み合わせたもので、回転運動や往復運動を行うリンク機構の一つになります。
13. ばねとばね定数について

「ばね（スプリング）」はねじや歯車などの機械要素と同じく规格が存在しますが、多くの場合製品に合わせた設計が行われます。規格品がない場合は、仕様書を作成してばねメーカーで作成してもらいます。

ばねの仕様書

<table>
<thead>
<tr>
<th>材料</th>
<th>SWPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料直径 mm</td>
<td>4</td>
</tr>
<tr>
<td>コイル平均径 mm</td>
<td>25</td>
</tr>
<tr>
<td>コイル外形 mm</td>
<td>22±0.4</td>
</tr>
<tr>
<td>有効巻数</td>
<td>9.5</td>
</tr>
<tr>
<td>総巻数</td>
<td>11.5</td>
</tr>
<tr>
<td>巻方向</td>
<td>右</td>
</tr>
<tr>
<td>自由高さ mm</td>
<td>80</td>
</tr>
<tr>
<td>取付時</td>
<td>荷重 N 153±10%</td>
</tr>
<tr>
<td></td>
<td>高さ mm 70</td>
</tr>
<tr>
<td>最大荷重時</td>
<td>荷重 N 382</td>
</tr>
<tr>
<td></td>
<td>高さ mm 55</td>
</tr>
<tr>
<td>ばね定数 N/mm</td>
<td>15.3</td>
</tr>
</tbody>
</table>

表面処理

- 成形後の表面加工：ショットビーニング
- サビ止め処理：MFZnⅡ-C

ばねを設計する際のインプット情報は以下となります。

- 取り付けスペース（外形／内径）
- 最大のたわみ量
- 取り付け時のたわみ量
- 最大荷重
- 取り付け時荷重
知識ゼロからものづくりを学ぶ 機械設計エンジニアの基礎知識

「取り付けスペース」とは、ばねが設置されるスペースのことです。一般的には「シャフト」や「ざぐり」を入れてばねを固定します。

これらの情報をもとに、ばねの各種寸法が決定されます。また、これら寸法以外にも、使用環境や寿命などを考慮して材質、強度、表面処理の方法を決めていきます。

13-1. ばね定数 k について

ばねに単位長さの伸縮させる力を、ばね定数と言います。

例えば、ばねを 1mm 縮めるのに必要な力が 2N であった場合、ばね定数は $2 \div 1 = 2 \text{ N/mm}$ となります。

ばね定数はフックの法則から求めることができます。

フックの法則 $F=k \cdot x$ より

ばね定数 $k = \frac{F}{x}$ となります。

変位 x は ばね設計では、たわみ δ と言われ、公式があります。公式については後述します。
ばね設計時は、必要な力 F と たわみ δ を念頭に置いて ばね定数 k を決定し、ばねを選定します。
13-2. ばね

ばねは力を加えても変形しない「剛体」を用いてやわらかい「弾性体」を作ります。ばねの材料を特別な形状または構造に作って、エネルギーを吸収させたり蓄積させたりする目的で使用するものです。ばねの使用箇所によりさまざまな形状のものが用いられます。

13-2-1. ばね用材料

ばね用材料は「熱間成型用」と「冷間成型用」に大別されます。前者は比較的大形の板ばね、コイルばねなどに、後者は冷間成形が可能な小形ばねに使用されます。

i. 熱間成形用ばね材料 JIS G 4801 に9種類のばね鋼(材料記号 SUP)が規定されています。特殊な用途として工具鋼、高速度鋼、耐熱鋼などが使用されます。

ii. 冷間成形用ばね材料 熱間成形用に比べると多くの材料がJISおよびJSMA(ばね工業会)規格に規定されています。特に耐熱、耐食性が要求される場合にはCo基合金(Elgiloy、Nivaflexなど)、Ni基合金(モネル、インコネルなど)が使用されます。また精密機器用の恒弾性ばね材料としてElinvar、Ni−SpanCなどの高合金が使用されます。

13-2-2. ばねの種類

さまざまな形状のばねがあり、これもばねとか驚く形状のものもありますが、代表的なばねを以下に記します。

<table>
<thead>
<tr>
<th>コイルばね</th>
<th>壓縮コイルばね</th>
</tr>
</thead>
<tbody>
<tr>
<td>引張りコイルばね</td>
<td></td>
</tr>
<tr>
<td>ねじりコイルばね</td>
<td></td>
</tr>
<tr>
<td>板ばね</td>
<td></td>
</tr>
<tr>
<td>皿ばね</td>
<td></td>
</tr>
</tbody>
</table>
圧縮、引張コイルばねの計算方法

13-3-1. ばねに発生するねじり応力
圧縮や引張コイルばねは、「ねじり応力」を発生させることで「ばね」としての機能を働かせます。ばねの設計は許容応力内（壊れない範囲）で使用しなければなりません。そのための応力を求める方法を記載しますが、以下の公式を用いてばねを設計するの特殊な場合となります。

a）有効径 D、素線径 d のコイルばねに荷重 P が掛ったとすると、ばねにはねじりモーメント PD を受けます。発生するねじり応力 τ とすると下記公式で表されます。

\[
\tau = \frac{8PD}{\pi d^3}
\]

この公式は、ばねの全周に一様なねじり応力を生じると考えた場合に使われます。
実際のばねではコイルの曲げ率とせん断力が影響してコイルの内側の応力のほうが、外側の応力より大きくなります。この影響を考慮して、一般には「ワール」の修正係数 K を用いてつきの修正式が用いられます。

\[
\tau_{\text{max}} = K \frac{8PD}{\pi d^3}
\]

「ワール」の修正係数 \(K = \frac{4c-1}{4c-4} \cdot \frac{0.615}{c} \)

ただし \(c = \frac{D}{d} \)（ばね指数）

ここで c をばね指数と言います。この値が大き過ぎても小さ過ぎても好ましくなく、一般に 4 から 10 の間がよいとされています。
b) たわみ ポイルのたわみδは下記公式で表されます。

\[\delta = \frac{8NaD^3P}{Gd^4} \]

ここで、
δ ばねのたわみ
G 横弾性係数
Na 有効巻き数
D コイル平均径
d 線径

横弾性係数 G は、ばね材料によって異なるため設計便覧などで調べることが必要です。また、有効巻き数 Na は総巻き数 Nt に対して以下の公式で算出します。

i. コイル両端がつぎの自由コイルに接しているとき、
Na = Nt - 2
ii. コイル両端がつぎのコイルに接していないで研削部の長さが 3/4 巻のもの
Na = Nt - 1.5

有効巻き数は 3 以上取るのが一般的です。

c) ばね定数 ばね定数の公式は前出の \(F = kx \) より 荷重 P 変位 δ を代入すると P=kδ となり

\[k = \frac{P}{\delta} = \frac{Gd^4}{8NaD^3} \]

となります。

これらの公式を使用してばねを算出するのは結構特殊の場合で、現在は出来合いの製品があるので、取
付の拘束状態を考え、P、δ、dより必要なばね定数の製品を選定するのが一般的です。
ただし引張コイルばねの場合、一般的に密着巻で成形されるため、成形後のばねの軸線方向の弾性変形が妨げられ、無荷重時にコイルを互いに密着させようとする初張力と呼ばれる力が生じます。Pに考慮する必要が有ります。初張力Piの公式を以下に示します。

\[Pi = \frac{\pi d^3}{8D} \cdot \tau_1 \]

\(\tau_1 \)..........................初張力によるねじれ応力

\(\tau_1 \)の値は文献の参照をお願いいたしますが、D/dの値より40N/mm²から180N/mm²となります。

以上ばねの基礎について記述して参りましたが、他のばねの計算式や詳細につきましては文献の参照をお願いいたします。
知識ゼロからものづくりを学ぶ 機械設計エンジニアの基礎知識

即戦力エンジニア養成講座（E ラーニング）では、グランドコックという製品を題材として、設計プロセス毎に広くバランスの良い設計の基礎知識を身につけることが可能です。

<table>
<thead>
<tr>
<th>商品企画・構想設計</th>
<th>基本設計</th>
<th>詳細設計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポンチ絵</td>
<td>計画図</td>
<td>DR</td>
</tr>
<tr>
<td>市場ニーズ</td>
<td>市場調査</td>
<td>DR</td>
</tr>
<tr>
<td>キャンペーン</td>
<td>コスト</td>
<td>DR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試作・評価</th>
<th>製造・組立</th>
<th>販売開始</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAE解析</td>
<td>実験</td>
<td>金型</td>
</tr>
<tr>
<td>解析</td>
<td>開発</td>
<td>生産</td>
</tr>
<tr>
<td>実験評価</td>
<td>金型設計</td>
<td>生産計画</td>
</tr>
</tbody>
</table>

377万人のエンジニアが学習するものづくりウェブ MONOWEB 製作
1日10分、最短1ヶ月で設計経験0でも総合的に広くバランスの良い「機械設計の基礎」を身につける E ラーニング

受講者満足度 ★★★★☆ (4.28)
1日10分! スキマ時間を使って学習できる
90日間全額返金保証で安心
今だけ! 7大特典プレゼント中!

詳細はこちらをクリック！講座公開中！動画視聴できます！
知識ゼロからものづくりを学ぶ「機械設計エンジニアの基礎知識」

機械要素の基礎を学ぶ

2015年8月15日 発行
2018年8月21日 改訂3
発行元：株式会社RE
TEL:052-766-6900
http://www.re-re-e.com

本书の内容は、事前に株式会社REの文書による許諾を得ずに、本書の内容の一部あるいは、全体を無断で複写、複製、転写、転载、デジタルデータ化はできません。
機械要素の基礎を学ぶ